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Abstract—We obtain an asymptotic power series for the Weber–Schafheitlin integral whose
coefficients are distributions.
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In [1] we found the leading term of the asymptotics as ρ ↑ 1 of the integral

Iρc (µ, ν) =

∫ ∞
0

x−ρKiµ(x)Kiν(cx) dx, (1)

in which Kiλ(x) is the modified Bessel function of the third kind (the MacDonald function) [2 3],
and c > 0, µ > 0, ν > 0. This integral belongs to the class of discontinuous Weber–Schafheitlin
integrals [2], standing out among them as having the most complicated asymptotic behavior as
ρ ↑ 1. In the case c = 1, the asymptotic behavior of the integral (1) is given by

Iρ1 (µ, ν)→
π2

(µ+ ν) sinh
π(µ+ ν)

2

δ(ν − µ), ρ ↑ 1 (2)

(this property is used for the inversion of the Kontorovich–Lebedev transform [4]). The asymp-
totics (1) for c �= 1 must be known in order to calculate nonlinear functionals from the trajectories
of Gaussian Markov differentiable processes, for example, such functionals as the moments and the
distribution function of the number of zeros of a process [5, 6]. In the case c �= 1, the limiting
(as ρ ↑ 1) expression for Iρc (µ, ν) turns out to be more complicated than (2) and includes the
distribution Vp(1/(ν − µ)) in addition to the δ-function.

In the present paper, we obtain an asymptotic series for the integral (1) on the basis of the
method used in [1], thus solving the problem of calculating this integral for ρ close to unity. For
other values, ρ < 1, this integral is calculated using an exact formula (see [2, 3]), which involves the
product of gamma-function, beta-function, and the Gauss hypergeometric function. Note that the
use of this formula for finding an asymptotic series entails greater effort than the method proposed
here.

Our result will involve the distributions δ(x) , δ(n)(x) , and Vpx−n , where n ≥ 1 is an integer.
Using ω(x) to denote any one of these functions, we define them as linear continuous functionals
(ω(x), ϕ(x)) on the space K(−b, a) , a > 0, b > 0, of infinitely differentiable (on (−b, a)) functions
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ϕ(x) assigning to ϕ(x) the numbers on the right-hand sides of the following formulas:

(δ(x), ϕ(x)) = ϕ(0), (δ(n)(x), ϕ(x)) = (−1)nϕ
(n)(0)

n!
, (3)(

Vp
1

x
, ϕ(x)

)
= Vp

∫ a
−b
ϕ(x)

dx

x
, (4)

(
Vp

1

xn+1
, ϕ(x)

)
= Vp

∫ a
−b

[
ϕ(x) −

n−1∑
k=0

ϕ(k)(0)xk

k!

]
dx

xn+1
, n ≥ 1. (5)

By the symbol Vp in front of the integral we mean its principal value in the sense of Cauchy:

Vp

∫ a
−b
f(x) dx = lim

ε↓0

(∫ −ε
−b

f(x) dx+

∫ a
ε

f(x) dx

)
.

For the distributions δ(n)(x) , the endpoints of the interval [−b, a] for a > 0, b > 0 is of no
importance, but for Vpx−n their values are essential. For example,(

Vp
1

x
, 1

)
= Vp

∫ a
−b

dx

x
= ln

a

b
. (6)

We shall say that a function f(α, x) is expandable in a generalized asymptotic series in the
space K(−b, a) and write

f(α, x) ∼
∞∑
n=0

An(x)ωn(α), α ↓ 0

if ωn+1(α) = o(ωn(α)) and for any function ϕ(x) ∈ K(−b, a) the series

(f(α, x), ϕ(x)) ∼
∞∑
n=0

(An(x), ϕ(x))ωn(α), α ↓ 0,

is an asymptotic series (in the ordinary sense) for the functional (f(α, x), ϕ(x)) .

Theorem. For c > 0 , µ > 0 , ν > 0 , the function f(α, β) ≡ Iρc (µ, ν) can be expanded in the
following generalized asymptotic series in the space K(−b, a) :

Iρc (µ, ν) ∼
π

4γ sinhπγ

∞∑
n=0

An(β|γ , c)α
n

n!
, α =

1− ρ
2
↓ 0,

where 2β = ν − µ , 2γ = ν + µ , β ∈ [−b, a] ,

An(β|γ , c) =
n∑
k=0

n!

k!(n − k)!ak(γ)Bn−k(β|γ , c), (7)

an(γ) =

n∑
k=0

n!

k!(n − k)! (ln 4)
n−kbk , (8)

b0 = 1, bn+1 ≡ bn+1(γ) = vn +
n∑
k1=1

n!

(n− k1)! k1! (1− δn0)vn−k1vk1−1

+

n∑
j=2

n∑
k1=j

k1−1∑
k2=j−1

· · ·
kj−1−1∑
kj=1

n!(1− δn0)
(n− k1)! kj !vn−k1vkj−1

j−1∏
r=1

vkr−kr+1−1(1− δnr)
(kr − kr+1 − 1)!kr

, (9)
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vn ≡ vn(γ) = ψ(n)(iγ) + ψ(n)(−iγ), ψ(n)(x) =
dn

dxn
ln Γ(x),

Bn(β|γ , c) = Kn(β, γ ; c) + πδ(n)(β) cos
(
nπ

2
− γ ln c

)

+ n![Vpβ−n−1 − dn(β)] sin
(
nπ

2
+ γ ln c

)
, (10)

d0(β) = 0, dn(β) =

n∑
k=1

(−1)n−k
(n− k)!k δ

n−k(β)[a−k − (−b)−k], (11)

Kn(β, γ ; c) =

∫ 1
0

[
cos

(
β lnx− γ ln 1 + cx

x+ c

)
lnn

x

(x+ c)(1 + cx)

− cos(β lnx+ γ ln c) lnn
x

c

]
dx

x
, (12)

Γ(x) is the gamma-function, ψ(n)(x) is the polygamma-function, and δij is the Kronecker delta.

Remark. The coefficients of (9) bn ≡ bn(γ) are defined by the relation (see Lemma 4 below)

dn

dαn
Γ(α+ iγ) Γ(α− iγ)

∣∣∣
α=0

= Γ(iγ) Γ(−iγ) bn(γ).

The first four coefficients are

b1 = v0 , b2 = v1 + v
2
0 , b3 = v2 + 3v1v0 + v

3
0 , b4 = v3 + 4v2v0 + 6v1v

2
0 + 3v21 + v

4
0 ,

where the vk(γ) are the same as in the statement of the theorem.

The proof of the theorem is based on Lemmas 1–4, which can be of use outside the scope of the
problem under consideration.

Lemma 1. For ϕ(x) ∈ K(−b, a) , the following formula is valid :
∫ a
−b
cn(x)

dx

xn+1
=

(
Vp

1

xn+1
, ϕ(x)

)
− ϕ

(n)(0)(Vp 1/x, 1)

n!
, (13)

in which

cn(x) = ϕ(x) −
n∑
k=0

ϕ(k)(0)xk

k!
. (14)

Indeed, by the definition of Vpx−n−1 (see (5)) we have

(
Vp

1

xn+1
, ϕ(x)

)
= Vp

∫ a
−b

[
cn(x) +

ϕ(n)(0)xn

n!

]
dx

xn+1
. (15)

Since cn(x) = O(x
n+1) for small x , it follows that

Vp

∫ a
−b
cn(x)x

−n−1 dx =

∫ a
−b
cn(x)x

−n−1 dx, (16)

and we readily obtain (13) from (15) and (16), since the integral of the second summand in (15) is
equal to ϕ(n)(0)(Vp 1/x, 1)/n! .
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Lemma 2. We have the following generalized asymptotic series in the space K(−b, a) :

1

x∓ iα ∼
∞∑
n=0

(±iα)n[(x∓ i0)−n−1 − dn(x)], α ↓ 0, (17)

where the dn(x) are defined by formula (11) (for β = x ) and

(x∓ i0)−n−1 = Vpx−n−1 ± (−1)niπδ(n)(x)
n!

. (18)

Proof. Consider the linear functional (1/(x − iα), ϕ(x)) for ϕ(x) ∈ K(−b, a) . Obviously,

(
1

x− iα , ϕ(x)
)

= ϕ(iα)

(
1

x− iα , 1
)
+

(
1,
ϕ(x)− ϕ(iα)
x− iα

)
. (19)

For α �= 0, we have

(
1

x− iα , 1
)

=

∫ a
−b

dx

x− iα =
1

2
ln
a2 + α2

b2 + α2
+ i

[
arctan

a

α
+ arctan

b

α

]

and this expression can be expanded in the asymptotic series

ln
a

b
+ iπ −

∞∑
k=1

(iα)k
a−k − (−b)−k

k
, α ↓ 0.

In a similar way (Taylor series), we obtain

ϕ(x)− ϕ(iα)
x− iα =

∞∑
n=0

(iα)ncn(x)x
−n−1 , (20)

where the coefficients cn(x) are the same as in Lemma 1 (see (14)). Using this lemma and the
linearity of the functional, for the second summand in (19) we obtain

(
1,
ϕ(x) − ϕ(iα)
x− iα

)
=

∞∑
n=0

(iα)n
(
Vp

1

xn+1
, ϕ(x)

)
− ϕ(iα)

(
Vp

1

x
, 1

)
, (21)

so that, by (20), (21), and (6), from (19) we obtain

(
1

x− iα , ϕ(x)
)

= ϕ(iα)

{
iπ −

∞∑
k=1

(iα)k

k
[a−k − (−b)−k] +

∞∑
n=0

(iα)n
(
Vp

1

xn+1
, ϕ(x)

)}
. (22)

Expressing ϕ(iα) as a Taylor series in powers of α and multiplying the asymptotic series in the
first summand in (22), we see that

(
1

x− iα , ϕ(x)
)

=

∞∑
n=0

(iα)n
{
ϕ(n)(0)

n!
iπ +

(
Vp

1

xn+1
, ϕ(x)

)
−

n∑
k=1

ϕ(n−k)(0)
(n− k)!k [a

−k − (−b)−k]
}
.

From this expression we obtain (17) if we recall (3)–(5), (18), and (11). In the same way, we can
prove the formula for 1/(x+ iα) . �

Note that the finiteness of the length of the interval (−b, a) in the definition of the space
K(−b, a) of main functions gives rise to the additional summands dn(x) in (17), as compared to
formulas generalizing the Sokhotskii formulas [7].
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Lemma 3. The following generalized asymptotic series in the space K(−b, a) are valid :
α

x2 + α2
∼

∞∑
n=0

αn

n!

[
πδ(n)(x) cos

nπ

2
+ n!

(
Vp

1

xn+1
− dn(x)

)
sin
nπ

2

]
, α ↓ 0, (23)

x

x2 + α2
∼

∞∑
n=0

αn

n!

[
πδ(n)(x) sin

nπ

2
+ n!

(
Vp

1

xn+1
− dn(x)

)
cos

nπ

2

]
, α ↓ 0, (24)

where the dn(x) are defined by relations (11) (for x = β ).

Formulas (23), (24) are readily obtained from the representation

2iα

x2 + α2
=

1

x+ iα
− 1

x− iα ,
2x

x+ iα
=

1

x+ iα
+

1

x− iα
and the previous Lemma 2 (see (17)–(19)).

Lemma 4. If γ > 0 , then we have the convergent series

4α−1Γ(α+ iγ) Γ(α − iγ) = π

4γ sinhπγ

∞∑
n=0

an(γ)
αn

n!
, (25)

in which the an(γ) are defined by relations (8) (9).

This assertion follows from the analyticity of the functions on the left-hand side of (25) for
γ > 0. Multiplying the Taylor series for 4α−1 by Γ(α+ iγ) Γ(α− γ) , we obtain (25), since by the
Leibniz rule for the differentiation of a product we have

dn

dαn
Γ(α+ iγ) Γ(α− iγ)

∣∣∣
α=0

= Γ(iγ) Γ(−iγ) bn(γ),

where Γ(iγ) Γ(−iγ) = π/(γ sinhπγ) and the coefficients bn(γ) are the same as in (9).

Proof of the theorem. In [1], it was shown that

Iρc (µ, ν) = 4α−1Γ(α+ iγ) Γ(α − iγ)Fαc (β, γ),
where

Fαc (β, γ) =

∫ ∞
−∞

e2itβψγc (e
t) dt

(1 + 2c · cosh 2t+ c2)α , ψγc (x) =

(
x2 + c

1 + cx2

)iγ
.

In view of Lemma 4, it only remains to find an asymptotic series for the integral Fαc (β, γ) . By
the change of variable exp(−2t) = x , we reduce the integral to the form

2Fαc (be, γ) =

∫ 1
0

xα−1[fα(x|β, γ ; c) + fα(x| − β,−γ ; c)] dx, (26)

where
fα(x|β, γ ; c) = x−iβ(x+ c)−iγ−α(1 + cx)iγ−α.

In (26), adding to the first and second summands in brackets and subtracting from them
x−iβc−iγ and xiβciγ , respectively, and taking the integrals of xα−iβ−1 and xα+iβ−1 , we obtain

2Fαc (β, γ) =
c−iγ

α− iβ +
ciγ

α+ iβ
+ Jαc (β, γ) + J

α
c (−β,−γ), (27)

Jαc (β, γ) =

∫ 1
0

[(
1 + cx

x+ c

)iγ
exp

(
α ln

x

(x+ c)(1 + cx)

)
− c−iγ exp

(
α ln

a

b

)]
dx

xiβ+1
. (28)
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In (28), let us replace the exponentials by their Taylor series in powers of α . We obtain the
asymptotic series

Jαc (β, γ) ∼
∞∑
n=0

Qn(β, γ ; c)
αn

n!
, α ↓ 0, (29)

in which

Qn(β, γ ; c) =

∫ 1
0

x−iβ−1
[(

1 + cx

x+ c

)iγ
lnn

x

(x+ c)(1 + cx)
− c−iγ ln

n x

c

]
dx. (30)

The integrals (30) converge for any integer n and any real β and γ > 0. Indeed, the integrand
can have a singularity only at x = 0, but in the neighborhood of zero this function for γ > 0 is of
order x−iβ lnn x and this singularity is integrable for a real β .

It is readily verified that the series (29) is asymptotic if we replace the Taylor series for the
exponentials by partial sums whose remainder, after integration over (0, 1) , yields a finite value
multiplied by the order of the first discarded term.

Since the first two and the last two summands in (27) are complex conjugate values, from (27),
by (29), (30), we obtain

Fαc (β, γ) ∼
α

α2 + β2
cos(γ ln c) +

β

α2 + β2
sin(γ ln c) +

∞∑
n=0

Kn(β, γ ; c)
αn

n!
, (31)

where the Kn(β, γ ; c) are defined by relation (12).
The asymptotic series as α ↓ 0 for the first two summands in (31) were constructed in Lemma 3.

Using (23)–(25), from (31) we obtain the generalized asymptotic series

Fαc (β, γ) ∼
∞∑
n=0

Bn(β|γ ; c)α
n

n!
(32)

on the functions ϕ(β) ∈ K(−b, a) .
Multiplying the asymptotic series (32) and (25) (Lemma 4) and collecting the coefficients of αn ,

we obtain the assertion of the theorem. This operation is legitimate, since the series in powers of α
are multiplied and since only one of them is a generalized asymptotic series. �

REFERENCES

1. R. N. Miroshin, “An asymptotic estimate of the integral of the product of two modified Bessel functions
and a power function,” Mat. Zametki [Math. Notes], 61 (1997), no. 3, 456–458 [373–456].

2. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of
Mathematical Physics, Springer-Verlag, New York, 1966.

3. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka,
Moscow, 1971.
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