
Sonderdruck aus

Nonlinear Analysis

Theory and Applications

Proceedings of the Seventh International Summer School

held at Berlin, GDR

from August 27 to September I, 1979

ABHANDLUNGEN

DER AKADEMIE DER WISSENSCHAFTEN DER DDR

ABTEILUNG MATHEMATIK — NATURWISSENSCHAFTEN — TECHNIK

Jahrgang 1981 . Nr. 2 N
H

?".·:,j
AKADEMIE-VERLAG · BERLIN 1981 ·1



'$1

:

Two-component flow round a solid sphere

Jurgis SzlaZa, Berlin

The processes of mass and heat transfer are important in many practical situations.

In order to solve these problems we have to know first of all the velocity distribution

of appropriate flows. On the other hand the named processes take often place in the

immediate neighbourhood of immersed particles like solid particles, drops, bubbles

and so on. Therefore tlhe problem of two-component flow round a solid sphere is of

great importance.

Starting from the model idea for multicomponent. flows as presented by L. D. Landau

[I] and Ch. A. Rachmatulin [2] in this paper at first the solution of t.he hydrodynamic

problem of this motion is given. In this ease the formulas for velocities and pressures

of the components and of the mixture are derived and a generalization of Stokes formula

for the force on a small sphere is found.

In this connecttion it, is also possible to solve the inverse problem, namely to find the

mixture viscosity µg and the interaction coefficient K between the components.

In the second part of the paper t,he problem of convective mass transport in a two-com-

ponent flow round a solid sphere is investigated and a formula for the total diffusion

stream on a small sphere is given.
.

1. The formulation of the problem

We consider a sphere with radius a in a stationary laminar ineompressible two-
component flow. We assume that the real and reduced densities of both the components

are constant, namely Q: " const and t?, — const. Therefore the porosit,ies z, — Q'

are constant, too. The interaction coefficient K was also assumed to be constant. el
Now let us consider a two-component flow with small Reynolds numbers Rei < 1,

i.e. t.he sphere radius a is assumed to be sufficiently small. Then in the equations of
motion the inertia terms can be neglected in comparison with the friction and inter-
action terms. If in Rachmatulin's equations we eliminat,e the inertia terms and we
assume that external forces dp not exist, the equation system will be given by

grad p — µi Av, + K y (v, — b',), div u, — 0, i — 1, 2, (1.1)

Zj i I

where ,uj, t:, p are adequate the viscosities, velocities and pressure of bot,h components.
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For the complete formulation of the problem we need, besides the equations (1.1),

the boundary conditions on the sphere surface and far from the sphere.

For the further investigations we choose the coordinate system so that the coordinate

origin is placed at the centre of the sphere and the motion takes place parallel to the

%-axis. Because of the form of the regarded body it is suitable to carry out the investi-

gat.ions in spherical coordinates (r, tL p). Therefore we have an axial symmetric flow
for which

aui 0, i,, · u, u,,, 0 ' (1.2)

QV

is valid and for which the :t-axis is the axis of synunet.ry.

As is shown in [3] for such flows the stream functions Yi and 4) exist for t.he single

components and for the mixture. With the help of these stream functions the different

parameters of the two-component flow can be determined.
Therefore the problem is to solve the equations for the stream functions Vi derived

from (1.1) considering the appropriate boundary conditions.

2. The velocities of the components and the mixture
of the two-component medium

By the definit.ion for the stream function the velocity components are given by'

1 ap, 1 a,
Uir " " , , ?.)i0 " . .

r' sin 0 ag r sin 0 dr
(2.1)

In [3] is shown that the equations of motion (1.1) can be decoupled and regarding
the relations (2.1) the equations for the determination of the stream functions become
the following: '

E'Z, — 0, E'[E'Z, — 1/'Z,j " 0. (2.2)

The operator E' in (2.2) is given by

j)2 1 — n2 j)2
E' " 8,2 + r' a·)72' '7 " cos 0. (2.3)

There are

Zi " Mi + x,µ*V2, Z2 " Vi " 'P2, (2.4)

and

µ* — µ', 7' — K, + K,, K, — K , (2.5)

· µI ,ujXj

If we now determine the functions Zi from (2.2), we shall, according to (2.3), find the
stream functions Vi, namely

Z1 + ;'e2µ*Z2 Z1 _ XlZ2
Vi " Xj + x2µ* ' V2 " yi + x2µ* " (2.6)
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With the use of the formula IP " '¢iVi + z21P2 we get the stream function of the mix-

ture
IP " Xj +1x2µ* IZi + x1x2(µ* — I) Z2j·

,

(2.7)

Considering the relations (2.6) we can compute the velocit.ies of the components accord-
ing to (2.1). Then the velocities of the mixture are given by trhe formulas

jTq, " Xlulq,, + X2Q)2q, , k " 1, 2, ql " T, q2 = 6 . (2.8)

As in [3] is shown the general solution for the motion of a spherical particle in a
two-component medium can be found by solving the equations (2.2). We then have

tL, = : sin2 19 (Ap' + B,t_' + C,r' + D,?'),

(2.9)
L2 " : sin2 t) A2 (V — : ) e" + B2 (V + : I e"" — :2 (C2t2" + D2t"'l) .

For the fixation of the boundary conditions we now consider the following problem:
A motionless solid sphere is in the flow of a two-component medium the compo-

nents of which have the velocities Ui — —Lui far from i:he sphere.

The boundary conditions on the sphere surface are the following

v,1,=, = 0, ::' , _ , — 0. (2.10)

Because the flow field far from t.he sphere is unperturbed the following relations must
be satisfied there:

1Pi—> : T2uisin2 0 for t —> (x) . (2.11)

In view of (2.4), (2.10) and (2.11) we obtain the boundary conditions for Z, and Z,

L,|, _ , = 0, %. == 0, Z, -> :, r'U* sin' t) for T —> CX), (2.12)
8t t = a

and ¢

Z2i, _ a == 0 , az2 == 0, Z, —> 1 r2u sin2.0 for T —> DO,
2a T = a

(2.13)

where
U"* — x, U, + x,µ*U,, U == U, — U,. (2.14)

With the use of these boundary conditions we now determine Z, and Z2 from (2.9).
As according t.o (2.12) Zi -d. 1 U* sin' 0 for r —> cxj we obtain

r2 2

C, — 0, A, — U*

immediately from (2.9), so t¶hat Z, is given by

Z, " : sin' 6 (U*r' + Bp""' + D1'r). (2.15)
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The conditions (2.12) for t — a supply us with equations for the determination of B,

and D,, namely

:' + D,a — —a'U*, :: + D, — "2aU*,

from which we find

B, = : a'U*, D, — : aU*.

If we put the obtained coefficients into (2.15), we shall get to the relation

Z1 — : r2u* sin2 t) _ : ( : }3 _ : ( : ) + 1 . (2.16)

When we consider the boundary conditions (2.13) for Z2 we see that m _+ 1 U sin' 0

for r —> oo. Because of (2.9) there are then t2 2

A, — 0, C, — —y'U,

so that we can write for Z2

Z, = : sin' t9 B, (V + : ) e_" + Ur' — D2 :1,_ ·
(2.17)

Then the conditions (2.13) for r — a supply us with the' following equations for the
determination of B, and D,

B2 (V + : ) ""'" _ :, 2" " —ajl,

—B2 g + y (V + :)j e_'" + :4 :: — —2au.

_
After solving this system we find

3aU
B2 = 72 c'": D, — aub2a' + 3(ya + 1)]·

If we put these coefficients into (2.17), we shall obtain, after some transformations,
the formula

)(, == 1 r2u sin' 0 {1 _ f)3 "1 3
1 2 t + ,/2a2 ((j9CL + I) — (yr + I) e-y('-a)) }, (2.18)

_
The Z, and Z2 having been found, the stream functions V, and V, can be determined

from (2.6) and the velocities of the components can be found from (2.1). We then have

Q)1t Xj :)::µ* {U* ": (:)3 _ : |:) + 1

" " . (2.19)
+ x2µ*U |1 _ ( :)3 1 + ),:5a2 ((ycl + I) _ (yt + I) e-7(T-a))_ _ } ,
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-U,, — — ;;';j,, {U* i: (:)' — : C) +1]

— Xjij [1 — ¢)3 j1 + j;j2 ((YCL + i) (7r + i) e y(T (l))jj},

319

u10 " 2(Xl S; :2µ*) {U* F : ( :)3 : ( : ) + 2]

,

- (2.19)+ %2µ*U [2 + ( : )3 j1 + ,,:a2 ((7a + I) — (y2r2 + yr + I) e-y('-a))l!},

'u26 " 2(XlS: :2µ*) {U* F : ¢)3 _ : Cl + 2]

xlu [2 + (:)3 j1 + 7:12 ((7a + I) — (y2r2 + yr + I) e 7(" a))j)}

,

In view of these expressions we can calculate the velocities of the mixture from (2.8),
namely

"' " " z,:':µ* pi: t)'— : ¢)+ij

+ ZlX2(µ* — I) U j1 — ( : )3 j1 + ,/:a2 ((ya + I) _ (V + I) e-y('-'b))]]} ,

"0 " 2(x,s:' :,µ*) {U* F : ¢)' _ : (:) + 2j

· (2.20)

+ x,x2(µ* — I) U |2 + (:)'

X ji+ ,,:12 ((YCL + I) (72r2 + yr +1) e 7(' a))j"} .

G

If we put U, — U2, µ, " µ2 and o; " 9: into (2.19) and (2.20), i.e. if we have a
quasi-homogeneous flow, the velocities shall be indepedent on the interaction between
the components. In this case we get formulas which were obtained for a homogeneous

medium [4]·

3. The generalization of Stokes formula for the drag force
of the small sphere and the determination of |ag, K and the pressure
of the two-component medium

For the case of an axial symmetric flow J. Happel and H. Brenner [4] have shown
that the force acting on a small particle can be computed by

F, —nµ, ,fg' :, CP) d,. (3.1)
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For a small sphere this expression becomes

71

F, — 7iµg jr a? sin' 0 :, (,,:i'n: D) , , a dl),

0

(3.2)

where µg is the mixture viscosity. On the other hand in [3] is explained that. the force
acting on a small particle for axial symmetric flows of a two-component. medium can be

found by t.he formula

F, - nµ, f S' ,: ("s'?) d' (3.3)

which for a small sphere is expressed by

n

F, — nµ, ji a'sin' 6 :, (,.,:i':: D) , _ , " dO. .

0 -

(3.4)

If we now consider our problem as a flow of a homogeneous medium round the sphere,
we shall obtain, according to Stokes, the following formula of force on the sphere:

F, — —6naµG Ug, (3.5)

where U,; " x, U, + x2 U2·
In view of (2.7), (2.16) and (2.18) we see that the expression for F, includes only the

parameters of both the components, but F, additionally depends on µg and K and F3
on µg. The mixture viscosity µg and the interaction coefficient K are not known.
Since all three formulas (3.2), (3.4) and (3.5) represent the force on the sphere for the
flow of the two-component medium, they have to be F, — F, — Fq. When we set

LP

F, — F, thed we get the equation for the determination of K. The relation F, —- F3
gives us an equation for the compution of µg. If we put µg and K obtained in t.his
way into (3.2), the relation F, — F, must. be satisfied.

Now we compute the force F, according to (3.4). This force represents the generali-
zation of the Stokes formula of the force on the sphere for the case of two-componentl

flow.
Applying the operator E' according to (2.3) to (2.16) we obtain

E27 — '" aU* sin2 t)
0"' 2 T

(3.6)

When we set this expression into (3.4) and we then integrate, the drag force of the sphere

is given by

F — —6naµ,(x,U, + x,µ*U,), (3.7)

where it is assumed F2 — F. '
Now we compute F, from (3.2). According to (2.7) there is

IP " 0'Z] + h2: (3.8)

_.
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where

1 z]?e2(µ* — I)
cl " ZCj + x2µ*' j9 " x, + x2µ* " (:?.9)

Applying the operator E' to (3.8) we obtain

E'jp — (XE'Zl + Be'z2· (3.10)

"With the use of (3.6) we can determine E'Zr

Applying (2.3) to (2.18) we find

E2Z, — : aU sin2 B (V + : ) e-v('-a), (3.11)

The fOrmulas (3.6) and (3.11) put into (3.10) give us

E21p : a sin' t) F 7* + gij (y + :) e '(' i . (3.12)

In view of this expression in (3.2) we obtain, after integration, F, as follows:

Fl " " Z] 6:a:2Gµ* [(Z1Ul + x,µ*U2) + : XlZ2(µ* — I)

X (U, — UJ (y'a' + 3va + 3)j , (3.13)

where we have used (2.14) and (3.9).
The forces F, and F, having been found with tjje use of (3.13) and (3.7), we can now

determine µg and K near the sphere. When we equate (3.5) and (3.7), i.e. F3 = F2,
we obtain the equation for the determination of µ,;, namely

µgUg " ,Uj(X, U, + x,µ*U,),
thus is

µl('e, U, + z,µ*U,)
0µg " Xj U, + z2 U2 (3.14)

"When we set F, — F, according to (3.13) and (3.5), we get the relation

(x,U1 + %2U2) (x, + z¢2µ*) — (X,Ul + x2µ*U,)

1
" 3 ¥1x2(µ* — I) (Ul — U2) (y2a2 + 3va + 3)

from which we can find t.he interaction coefficient K. Solving this equation we obtain

ya — —3. (3.15)

According to (2.5) we see that

)/2 " K CI + Z2:2)

and (3.15) then supplies us with a formula for K, namely

K == 9 x,µly2µ2
0

D

a'2 Xj,uj + X2µ2 (3.16)

2 1 Nonlinear Analysis
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When we put the obtained expressions of µg and K, i.e. (3.14) and (3.16), into (3.13),

we see that (3.7) and (3.13) are equal and thus is F, — F,.
The found results show that µg and K can be computed with the use of the known

parameters of both components of the medium. For the determination of the pressure p

of the two-component mediui'n we have according to [3] the formulas

8p. _ _ , µl a (E'Zl),

Cir r2 sin2 t) dt)

dp. _ µ1 a (E'Zl).

80 sin 0 Br

We put in here E'Z, from (3.6) and get

'" " ::" " " ::" '°

_ii ,,U*µ, (2 ',:' 0 d, + 'i;O dO)

:aU*µ, d (C:S2 6)

from which follows
P — Pdq + : µ,a,U* CO; t)

(3.17)

Here p,,, is the pressure of the two-coniponent medium far from the sphere.

4. The convective mass transport in a two-component flow round
a solid sphere

Let us consider the diffusion process of a substance immersed in a two-component
niediuni on a solid sphere. The appropriate hydrodynamic problem of the two-com-
ponent. flow round a solid sphere has been solved in the previous items of the paper.
Starting from these results we can now deal with the solution of the diffusion problem.

We consider the following problem:
The two-coin.ponent mediuin includes a little admixture which, in contact with the

solid sphere, leads to chemical or physicc-chemica.l changes. We search for the total
diffusion stream to the solid spherical particle.

The concentration c of the admixture may be small so that the diffusion coefficient D
can be assumed as cons'tant.. The Reynolds numbers Rei have been supposed to be
small. As we can see from the solution of the hydrodynamic problem the velocities
U) and i', deerease continuously with the distance from the particle surface and in the
imniedia.t.e neighbourhood of the solid sphere a hydrodynamic boundary layer does
not. exist. In spit.e of that however a diffusion boundary layer develops near the particle

ijja
surface. It is connected with the fact that the appropriate PeelCt numbers Pei " D

^e.-;- '£
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are many times greater than the Reynolds numbers Re,. Thus there are Rei < 1 and
Pei > 1 simultaneously. As known for Pe > 1 the essential diffusion processes take place
quite near the reaction surface. Here in the diffusion boundary layer we can observe
a clear change of the concentration of tlhe admixture.

The equation of the convective diffusion in t.he diffusion boundary layer in sphericdl
coordinates is given by

"' ;;"q :: " "C " :::)' ""'
Here on the right side the tern' ,2 ,:n t) Z ('in (g :i) is omitted, because the deriva

tives along the sphere surface compared with the derivatives with respect to the radius
vector are small. We can take the velocities i', and 1'() according to (2.20).

For solving (4.1) we still need the boundary conditions. Since the diffusion process
takes place in the immediate neighbourhood of the solid spherical particle, the ,condition
far from the sphere is

C — Cq for t —> (x) . (4.2)

Now we consider such a diffusion process for which tlhe condition

c — 0 for r — a (4.3)

is satisfied on the sphere surface. That means that the admixture eontacted with the
particles reacts immediately with them and therefore the greatest possible diffusion
stream is guaranteed. At last we assume that in the st.a.gnation point singularities do
not exist, i.e. it is

C — Cq in the stagnatlion point.

.

(4.4)

The problem now consists in solving the equation (4.1) with the boundary conditions
(4.2)—(4.4) and in the determinat.ion of an expression of the total diffusion stream.

On account. of the equation of continuity it' is

1 Chp I 8jp
u' " " t2 sin t) % ' Uq " r sin 0 dr ' (4.5)

where IP is the stream function,

1
IP " Xj + x2µ* IZi + z,x2(µ* — I) Z2j: ' : (4.6)

and Z,, Z2 can be found according to (2.16) and (2.18). Because "the essential diffusion
processes take place in the diffusion boundary layer, only solutions of the equation
(4.1) for such values of r are interesting for us, which differ little from the sphere radius

· 'ia. We set % — t — a. In view of (2.16) and (2.18) we then obtaiij for small %
· : ,k

Z, — : U* sin' 0 ,t', Z, — : U sin2 0 (]9C, '"3\ j) %2, ': ' (4.7)

2 1 *
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and according to (4.6) the stream function IP is given by

V — : sin' t) :t'[ocU* + Bu(ya + i)]

where

(4.8)

(X — d 1 , lg XlX2(µ* — :) .
"vj + x2µ* Zj + x2µ

When we change the variables 0, r of the equation (4.1) to the variables 0, IP and we

regard 8'c :> 2 dc, for % <9 a, we obtain the following equation at the diffusion
a:t2 a 8:t

boundary layer:

:: Da'sin' t) :p (""D ;;j· (4.9)

From (4.5) and (4.8) can be found

U, 3 X si"t) [,xU* +Bij(7a +1)]. (4.10)2 a.

Putting (4.10) into (4.9) and carrying out the substitution

Bi = Da' ]/3[ocU* + lgu(ya + i)] j sin' t) dt9 (4.11)

we get the equation

:: - ,', (Y'p ::)· ('.'2)

Instead of (4.2)—(4.4) we now have tihc following boundary conditions:

On the particle surface

c — 0 for IP = 0; (4.13)

far from the particle

C = Cq for V + 'x'; (4.14)

at the stagnation point

c — c, for t) — 0, IP — 0. ' (4.15)

The solution of the equation (4.12) in view of the boundary conditions (4.13) —(4.15)

was found in [5]. Therefore we can write at once

where

n' " 1::5 f""µ (— : 'i'| d'7

0

' 3[ocU* + BU(Ya + I) % sin 0
'7 " 4Da' " (D _ si;20}'/3°

(4.16)

(4.17)
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The diffusion stream on the particle surface can be determined by

j D a'. ,
?/% F_0

According to (4.16) and (4.17) we obtain ·

325

i _ D Cq ' /3[wU* +Bu(7a+ i)] sin t)
1,15 I 4Da' (D _ si;20)'/' ' (4.18)

The t,hiekness of the diffusion boundary layer can be computed by

(D _ sin 20)'/3

0 Dcq 1,15 ' 4Da' 2
i 3[uU* + Nj(y'1 + I)] sin t) "

The total diffusion of the admixture on the solid sphere can be found by

(4.19)

:7[

J — j i ds — 2na' j j sin 0 dO.

0

In view of (4.18) we then obtain

j — 7,98 · c,D'/%'/'[,xU* + lgu(ya + 1)]'/'. (4.20)

This formula includes the interaction coefficient K. In the item 3 we have determined
K in the immediate neighbourhood of the particle. When we set, according to (3.16),
the obtained expression for K into (4.20), we then get

J 7,98 · c,D'/3a4/3 { x, +1x,µ* ['Cj U, + x,µ* U, — 2x,x2(µ* — I) (Ul U2)]}1/3 (4.21)

in dependence on the parameters of the two-component medium. The function of 0

from the formula (4.18) has, at the point 0 0, the value 1, at the point t) LL the
value 3 2, and for t) — jt the value 0. Thus the diffusion stream has the greatest:alue

a
at the stagnation point t) — 0, it decreases with increasing t).

The thickness 0 of the diffusion boundary layer (4.19) becomes greater with increasing
t) and goes to infinity for 0 — st. At the beginning we have assumed the thickness of
the diffusion boundary layer to be much smaller than tjhe particle radius. Thus we can
conclude that beginning from some values t) placed near t) — jt, the considered theory
is no longer applicable. Apart from that. the domain 0 — n however has little influence
on the total stream J of the admixture.

In the end it may be remarked that the diffusion stream i, the thickness of the diffu-
sion boundary layer -0 and the total diffusion stream J of the admixture on the particle
depend on the parameters of the components of the two-component medium. Already
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for a quasihomogeneous flow, i.e. when U, = U,, the obtained formulas (4.18), (4.19)
and (4.21) are converted into the formulas of a homogeneous flow [5]· '

In other words, when the velocities of both the components are equal far from the
solid sphere, the interaction between the components is not important for solving the
diffusion problem and we can immediately take the known formulas for a homogeneous
medium.
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