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Two-component flow round a solid sphere
Jurgis Szlaza, Berlin

The processes of mass and heat transter are important in many practical situations.
In order to solve these problems we have to know first of all the velocity distribution
of appropriate flows. On the other hand the named processes take often place in the
immediate neighbourhood of immersed particles like solid particles, drops, bubbles
and so on. Therefore the problem of two-component flow round a solid sphere is of

great importance.

Starting from the model idea for multicomponent flows as presented by L. D. Landau
[1] and Ch. A. Rachmatulin [2] in this paper at first the solution of the hydrodynamic
problem of this motion is given. In this case the formulas for velocities and pressures
of the components and of the mixture are derived and a generalization of Stokes formula
for the force on a small sphere is found.

In this connection it is also possible to solve the inverse problem, namely to find the
mixture viscosity u, and the interaction coetficient K between the components.

In the second part of the paper the problem of convective mass transportina two-com-
ponent tlow round a solid sphere is investigated and a formula for the total diffusion
stream on a small sphere is given.

1. The formulation of the problem

We consider a sphere with radius « in a stationary laminar incompressible two-
component flow. We assume that the real and reduced densities of both the components

are constant, namely of = const and g; = const. Therefore the porosities x; = @;
are constant, too. The interaction coefficient A was also assumed to be constant. i

Now let us consider a two-component flow with small Reynolds numbers Re; << 1,
i.e. the sphere radius @ is assumed to be sutficiently small. Then in the equations of
motion the inertia terms can be neglected in comparison with the friction and inter-
action terms. If in Rachmatulin’s equations we eliminate the inertia terms and we
assume that external forces do not exist the equation system will be given by

l\' 2

grad p = u; Av; + — ¥ (v, — ), dive; =0, 7=1,2, (1.1)
i1

where u;, ¥, p are adequate the viscosities, velocities and pressure of both components.
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For the complete formulation of the problem we need, besides the equations (1.1),
the boundary conditions on the sphere surface and far from the sphere.

For the further investigations we choose the coordinate system so that the coordinate
origin is placed at the centre of the sphere and the motion takes place parallel to the
w-axis. Because of the form of the regarded body it is suitable to carry out the investi-
gations in spherical coordinates (r, 0, p). Therefore we have an axial symmetric flow
for which

p V=0

ip =0 ‘ (1.2)
is valid and for which the x-axis is the axis of symmetry.

As is shown in [3] for such flows the stream functions ¢; and ¥ exist for the single
components and for the mixture. With the help of these stream functions the different
parameters of the two-component flow can be determined.

Therefore the problem is to solve the equations for the stream functions P; derived
from (1.1) considering the appropriate boundary conditions.

2. The velocities of the components and the mixture
of the two-component medium

By the definition for the stream function the velocity components are given by

1 o ; 1 oy,
; %, Vig = — _l/) (2.1)
r2sin 0 06 rsinf or

[ p—

In [3] is shown that the equations of motion (1.1) can be decoupled and regarding
the relations (2.1) the equations for the determination of the stream functions become
the following: ‘

By =0, EYE?5 — 3] =0 (2.2)
The operator £2in (2.2) is given by
o2 1 — 2 o2
B Sy T2 5= cos . (2.3)
or? 2 P
There are
= iy A+ eeps, 22 = P — ¥, (2.4)
and
) : K
=B =K LKy, K= — (2.5)
My i

If we now determine the functions y; from (2.2), we shall, according to (2.3), find the
stream functions ¢;, namely

L g% o
- 71t xap 12’ Ys = J1 Z1)2 (2.6)

gt PR
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With the use of the formula v = x99, 4 %y, we get the stream function of the mix-
———— L+ (™ — 1) 1]

#y ™

8]
~1

(2.
Considering the relations (2.6) we can compute the velocities of the components accord-
ing to (2.1). Then the velocities of the mixture are given by the formulas
Vo = mvyg, + #ataq,, k=12, ¢ =r, ¢=0. (2.8)
As in [3] is shown the general solution for the motion of a spherical particle in a
two-component medium can be found by solving the equations (2.2). We then have
Y=

'; sin2 0 (4,72 + Byt ++ Cprt 4+ Dy,
A2 =—

(2.9)
1 .
e — - (Cyr® -+ Dyr™1)

1. 1 1
_Sln20|:A2 (7’—_) evr+B2(7/+—) ] N
2 r y )
For the fixation of the boundary conditions we now consider the following problem:

A motionless solid sphere is in the flow of a two-component medium the compo-
nents of which have the velocities U; = —7,U; far from the sphere.

ow;
wi!r:':a = 0’ v

The boundary conditions on the sphere surface are the following

= 0.

r

(2.10)
r=a
Because the flow field far from the sphere is unperturbed the following relations must
be satisfied there:

¢l~\7372C7isin26 for »— oo (2.11)

In view of (2.4), (2.10) and (2.11) we obtain the boundary conditions for y, and y,
and

=0, 4 ——rU*sin*0 for r— oo,
{1 B)

| aZ?

Z‘lirwza:O’ _

or
where

P4
rT=a

to|>-—

720 sin2 ) for 7r — oo,

U* = Uy + #u*Us, U

(2.13)
C—U, U,. (2.14)
With the use of these boundary conditions we now determine 7, and y, from (2.9)
) .
As according to (2.12) . U*sin? §for r — oo we obtain
Ty 2
C, =0,

4, = U*

J

immediately from (2.9), so that y, is given by
1

n=y sin® 6 (U*r? + Byt + Dyr)
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The conditions (2.12) for » = a supply us with equations for the determination of B,

and D,, namely
B,
a

B
-+ Do = —a?U%*, ——21 + D, = —2aU*,
a

from which we find

1 3
B, = —a’U*, Dy = ——aU*.
2 2
If we put the obtained coefficients into (2.15), we shall get to the relation
1 1 [a)3 3 fa
=—r20%sin20 | —(—] ——(— 1]. 2.16
w5 () =5 () a1

When we consider the boundary conditions (2.13) for y, we see that £ . Tsin2g
for r — co. Because of (2.9) there are then T2 2

A, =0, Cy,= —y2T,
so that we can write for y,
1., 1 . T 1
x2:§-s1n0B2 y+—)e? —{—Ur——Dz—z—, (2.17)
r ver

Then the conditions (2.13) for » = a supply us with the following equations for the
determination of B, and D,

Bl Den A2 g
a 2 a
—B, i_{_y y+l et L 1 &:_2 U
a? a 2 a?
After solving this system we find
By= 2L o, D, = alily%e + 3(a + D).
v

If we put these coefficients into (2.17), we shall obtain, after some transformations,
the formula

) B a\? 3
= 720 sin2 0 {1 — (7) [1 + o (o + 1) — (r 4+ 1) e‘V“““))}}. (2.18)

The 7, and 7, having been found, the stream functions y, and y, can be determined
from (2.6) and the velocities of the components can be found from (2.1). We then have

y 3 :
“:"iﬂTWFH“E@+q
%y -+ au™ 2 \r 2 \r
¢

(2.19)
crat? [1= (2 1+ ot 0= e
r via
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‘szr — A.___(/clse— U* __1._ i . i i + 1
%y + o u* 2 \r 2 \r

2)3 [1 (e 1) G+ 1) e*”‘“’)“}’
. A/zuz

S L KA 5o IR A S 2 A R
'wi2(x1+x2y*) 2(7‘ 2(7‘ 1
e

+ o U [2

3126:__._S_i£l£._[(]* _i ig_i _a_ +2
2(x1+x2u*)1 2 \r 2 \r
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(2.19)

In view of these expressions we can calculate the velocities of the mixture from (2.8),

namely

3 .
. ___9_{U [L (z) _3 (ﬂ)+ 1]
%y + wou™ 2 \r 2 \r

a\3 b
ot — 1) 0 [1 - (%) [1 (G 1 = G D e»w—w)ﬂ},
3

X {1 + = (a4 1) — (22 4+ 1 +1) e—?'(’“))”}.

(2.20)

It we put U, = U,, u; = py and ¢ = o3 into (2.19) and (2.20), i.e. if we have a
quasi-homogeneous flow, the velocities shall be indepedent on the interaction between
the components. In this case we get formulas which were obtained for a homogeneous

medium [4].

3. The generalization of Stokes formula for the drag force

of the small sphere and the determination of i, K and the pressure

of the two-component medium

For the case of an axial symmetric flow J. Happel and H. Brenner [4] have shown

that the force acting on a small particle can be computed by

5 (B
F, :n/tgf53 “ ( 1!’) ds.
on \ &

(3.1)
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For a small sphere this expression becomes

14

. 0 E?
F,=aug [a3s1n30 f ( L )

or \r2sin?f

adb, (3.2)

r=a

o

where g is the mixture viscosity. On the other hand in [3] is explained that the force
acting on a small particle for axial symmetric flows of a two-component medium can be
found by the formula

o (B
Fy — au, f & — <—4> ds (3.3)
/ S

which for a small sphere is expressed by

k24

8 E"Z,
Fy = mu, | a®sind §— —{1—
or \r2sin?6

0

a d. (3.4)

r=a

If we now consider our problem as a flow of a homogeneous medium round the sphere,
we shall obtain, according to Stokes, the following formula of force on the sphere:

Fy = —6aaugUs, (3.5)

where Uy, = #,U; + %,U,.

In view of (2.7), (2.16) and (2.18) we see that the expression for F, includes only the
parameters of both the components, but F; additionally depends on pg and K and Fy
on ug. The mixture viscosity ug and the interaction coefficient K are not known.
Since all three formulas (3.2), (3.4) and (3.5) represent the force on the sphere for the
flow of the two-component medium, they have to be F, = F, = F;. When we set
F, = Fy then we get the equation for the determination of K. The relation Fy = F;
gives us an equation for the compution of ug. If we put y; and K obtained in this
way into (3.2), the relation F'; = F, must be satistied.

Now we compute the force F, according to (3.4). This force represents the generali-
zation of the Stokes formula of the force on the sphere for the case of two-component
flow.

Applying the operator £? according to (2.3) to (2.16) we obtain

3 in% 0
By = = all* S”; (3.6)

When we set this expression into (3.4) and we then integrate, the drag force of the sphere
is given by

F = —6mau, (U, + %u*U,), (3.7)

where it is assumed Fy = F.
Now we compute F; from (3.2). According to (2.7) there is

p =0y + B> (3.8)
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where

1 _ #y#y (W — 1) (2.9)

b
%yt wu* %yt g™

X =

Applying the operator 2 to (3.8) we obtain
By = xB?; 4 pE?ys. (3.10)

With the use of (3.6) we can determine E2y;.
Applying (2.3) to (2.18) we find

— 1
B2y, = -z—aU sin? 6 (y + —) (=), (3.11)
7
The formulas (3.6) and (3.11) put into (3.10) give us
* — 1
wy =2 asint [(X T o («/ + —) e—w—ﬂ. (3.12)
‘ ” ”

In view of this expression in (3.2) we obtain, after integration, F, as follows:

6za, 1
P, = al [(ZlUx + #u*U,) + Y wza(u* — 1)

B %y + ™
X (Uy — Us) (y%a® + 3ya + 3)] s (3.13)

where we have used (2.14) and (3.9).
The forces ¥, and F, having been found with the use of (3.13) and (3.7), we can now
determine ug and K near the sphere. When we equate (3.5) and (3.7), i.e. Fy=F,,
we obtain the equation for the determination of ug, namely
weUg = (6, Uy + 2% U,),
thus is
(e Uy + g Uy)

= (3.14)
Uy + #,U,

He =

When we set F, = F; according to (3.13) and (3.5), we get the relation

CaUy + #Us) (1 + ™) — (o6, U; + #o1t*U,)

1

= ? mp(u* — 1) (Uy — Uy) (%a® 4 3ya + 3)
from which we can find the interaction coefficient K. Solving this equation we obtain

ya = —3. (3.15)
According to (2.5) we see that

1
Y= K( +— )

X1y Zalhs

and (3.15) then supplies us with a formula for K, namely

K — 9ttty (3.16)

a* g A+ oty

21 Nonlinear Analyvsis
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When we put the obtained expressions of ug; and K, te. (3.14) and (3.16), into (3.13),
we see that (3.7) and (3.13) are equal and thus is /'y = F,.

The found results show that u, and K can be computed with the use of the known
parameters of both components of the medium. For the determination of the pressure p
of the two-component medium we have according to [3] the formulas

op ty c .
I Tt T (B,
o Tt op )
ap iy C .

— = = — (E%p).

ol sinfl or e

We put in here £2y, from (3.6) and get

op cp
dp = L og v f/ db
or of)
3 » 2 cos sinf
= — all*u, ( - dr + > rl())
2 3 r2
3 208 6
= i all#u, d <( o3 })
2 r2
from which follows
3 cos f)
D= P 4 -—)- ‘u,!(l(,:’* - (;17)
Z r=

Here p. is the pressure of the two-component medinm far from the sphere.

4. The conveetive mass transport in a two-component flow round
a solid sphere

Let us consider the diffusion process of a substance immersed in a two-component
medium on a solid sphere. The appropriate hydrodynamic problem of the two-com-
ponent flow round a solid sphere has been solved in the previous items of the paper.
Starting from these results we can now deal with the solution of the diffusion problem.

We consider the following problem:

The two-component medinm includes a little admixture which, in contact with the
solid sphere, leads to chemical or physico-chemical changes. We search for the total
diffusion streanm to the solid spherical particle.

The concentration ¢ of the admixture may be small so that the diffusion coefficient D
can be assumed as constant. The Reynolds numbers Re; have been supposed to be
small. As we can see from the solution of the hydrodynamic problem the velocities
v, and », deerease continuously with the distance from the particle surface and in the
immediate neighbourhood of the solid sphere a hydrodynamic boundary layer does
not exist. In spite of that however a diffusion boundary layer develops near the particle
Ua
D

surface. It is connected with the fact that the appropriate Peclét numbers Pe;
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are many times greater than the Reynolds numbers Re;. Thus there are Re; < 1 and
Pe; > 1 simultaneously. As known for Pe>>> 1 the essential diffusion processes take place
quite near the reaction surface. Here in the diffusion boundary layer we can observe
a clear change of the concentration of the admixture.
The equation of the convective diffusion in the diffusion boundary layer in spherical
coordinates is given by
dc v, oc D (820 n E ﬁ)

vy — 4+ — — =

7 or rool

(4.1)

or? roor

Here on the right side the term -
r2sin 6 06 o

tives along the sphere surface compared with the derivatives with respect to the radius
vector are small. We can take the velocities v, and v; according to (2.20).

For solving (4.1) we still need the boundary conditions. Since the diffusion process
takes place in the immediate neighbourhood of the solid spherical particle, the condition
far from the sphere is

14 . ac\ . . .
— (sm [7} ”_6) is omitted, because the deriva-

c=c¢y for r—co. (4.2)
Now we consider such a diffusion process for which the condition
c=0 for r=ua (4.3)

is satisfied on the sphere surface. That means that the admixture contacted with the
particles reacts immediately with them and therefore the greatest possible diffusion
stream is guaranteed. At last we assume that in the stagnation point singularities do
not exist, i.e. it is

¢ = ¢y 1n the stagnation point. (4.4)
The problem now consists in solving the equation (4.1) with the boundary conditions

(4.2)—(4.4) and in the determination of an expression of the total diffusion stream.
On account of the equation of continuity it is

1@ I '
LA S (4.5)

" N PPN 0 . P
r2sin 0 00 rsinf or

v, =

where p is the stream function,

P I e — ) al, (4.6

sy xou™
and y;, 7, can be found according to (2.16) and (2.18). Because the essential diffusion
processes take place in the diffusion boundary layer, only solutions of the equation
(4.1) for such values of r are interesting for us, which differ little from the sphere radius
a. We set x = r — a. In view of (2.16) and (2.18) we then obtain for small x v

3

= T sin®0 (yu Oy a2, | (4.7)

3 .
7= n U*sin? 0 2%, y, =
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and according to (4.6) the stream function y is given by

p= %sinzﬁxQ[ocU* + BU(ya + 1)]

where
1 o %1”2(,“* — 1)

=

I X
%y 4 Hou® e

J.Szraza

(4.8)

When we change the variables 0, r of the equation (4.1) to the variables 6§, y and we

% 2 oc . .
regard — > — — for « < a, we obtain the following
oa* a ox
boundary layer:
% = Da? sin? 0—5— avyg haa .
00 oy oy
From (4.5) and (4.8) can be found

sin 6

[xU* + pU(ya + 1)].

3
vy = — X
2 a

Putting (4.10) into (4.9) and carrying out the substitution

& = Da*3[xU* + pU(ya—+ 1)] [ sin?0 d

we get the equation

acﬁa — dc
& o \'Vep)

equation at the diffusion

(4.9)

(4.10)

(4.11)

(4.12)

Instead of (4.2)—(4.4) we now have the following boundary conditions:

On the particle surface
c=0 for y=0;
far from the particle
¢c=1c¢y, for y-—o00;
at the stagnation point

c=¢, for 6 =0, p=0.

(4.13)

(4.14)

(4.15)

The solution of the equation (4.12) in view of the boundary conditions (4.13)—(4.15)

was found in [5]. Therefore we can write at once

1

4
C = i%(i—f)_ exp (—g 1]3) d)]
0

1/3[0((]* + BU(ya + 1) x sin 0

where

= 4Da? (e sin 29)1/3‘

p4]

(4.16)

(4.17)
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The diffusion stream on the particle surface can be determined by

j=D-2
ox

.
z=0

According to (4.16) and (4.17) we obtain

3 = .
j:Dﬁ’— /3[aU*+ﬁD(;/a,+1)] 51?6 . / (4.18)
1,15 4Da? g Sin 26\1/3
2
The thickness of the diffusion boundary layer can be computed by
( 0 sin 26)1/ 3
3 3 -
s=2% _ 115 e 2/ (4.19)
7 3[aU* + U(ya + 1)) sin 6
The total diffusion of the admixture on the solid sphere can be found by
J:fjds:zmzfjsinede.
0
In view of (4.18) we then obtain
J = 7,98 - ¢,D¥Ba[aU* 4 BU (va - 1)]13. (4.20)

This formula includes the interaction coefficient K. In the item 3 we have determined
K in the immediate neighbourhood of the particle. When we set, according to (3.16),
the obtained expression for K into (4.20), we then get

1/3
J = 7,98 - c,D¥3q4/3 ——1—;- [61Uy + #op™*Uy — 2ot (u* — 1) (U, — U2)]l (4.21)
%y A o™ I

in dependence on the parameters of the two-component medium. The function of ¢

from the formula (4.18) has, at the point 6 = 0, the value 1, at the point 6 = % the

3 5 =

value |/ — and for 6 = z the value 0. Thus the diffusion stream has the greatest value
T

at the stagnation point § = 0, it decreases with increasing 0.

The thickness 0 of the diffusion boundary layer (4.19) becomes greater with increasing
6 and goes to infinity for 6 = 7. At the beginning we have assumed the thickness of
the diffusion boundary layer to be much smaller than the particle radius. Thus we can
conclude that beginning from some values § placed near 6 = =, the considered theory
is no longer applicable. Apart from that the domain 6§ ~ x however has little influence
on the total stream .J of the admixture.

In the end it may be remarked that the diffusion stream j, the thickness of the diffu-
sion boundary layer 6 and the total diffusion stream .J of the admixture on the particle
depend on the parameters of the components of the two-component medium. Already
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for a quasithomogencous flow, i.e. when U, = U,, the obtained formulas (4.18), (4.19)
and (4.21) are converted into the formulas of a homogeneous flow [5]. °

In other words, when the velocities of both the components are equal far from the
solid sphere, the interaction between the components is not important for solving the
diffusion problem and we can immediately take the known formulas for a homogeneous
medium.
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